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1. 

Viscoelastic materials have widespread application in the area of vibration damping and
isolation. Such applications include the damping of vibrations in flexible structures such
as beams, plates, etc. (see e.g. references [1–4]). In addition, such materials are often used
in mechanical systems consisting of discrete components, where they provide vibration
isolation and damping. For example, viscoelastic materials are common elements in
machine systems (see references [1, 5]).

The mechanical properties of viscoelastic materials are characterized by a time
dependent relationship between stress and strain. Hence, the state of stress at a point in
a viscoelastic material depends on the history of the state of strain at that point, as well
as on the current state of strain. For this reason, a viscoelastic material may also be referred
to as a material with memory. In addition, if the relative deformations of the recent past
are more important in determining the stresses at a point than those further back in time,
the material is said to have fading memory (see e.g. references [6] and [7]). When the
material-with-memory model is used in its simplest form, the viscoelastic material may be
characterized by its relaxation modulus, which gives the overall strength of the history
dependence, and one or more relaxation times, which govern the rate of fading of memory.

The material-with-memory model, with one relaxation time, was used to investigate the
dynamics of a one-degree-of-freedom linear oscillator with a viscoelastic restoring force
in reference [8]. The role of the relaxation time and the relaxation modulus in the vibration
damping characteristics of the viscoelastic material was investigated, and conditions for
optimal damping in the case of unforced oscillations were derived. Also, the response of
the oscillator to sinusoidal forcing was studied.

Discrete mechanical models consisting of springs and dashpots are sometimes used in
modelling viscoelastic forces. The simplest of these are the Voigt model, the Maxwell
model, and the three element model (see e.g. reference [9]). These models, though they may
give good qualitative descriptions of viscoelastic behavior, are not always adequate for
practical purposes. Therefore, in applied studies of vibrations with viscoelastic forces,
experimentally obtained frequency dependent complex moduli are often employed (see e.g.
reference [1]). Both approaches—the mechanical models and the complex moduli—are
only good for the case of linear, i.e. small, vibrations.

In the case of large vibrations, the non-linear history dependence of the viscoelastic force
on the vibrational motion must be taken into consideration. This may be done by the use
of the material-with-memory model. Thus, for example in reference [10] non-linear
motions of an oscillator with viscoelastic restoring force were studied using the
material-with-memory model. Based on Melnikov’s method for subharmonic orbits (see
e.g. reference [11]), a method was derived to determine the existence of non-linear
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periodic orbits, (subharmonic orbits), for the viscoelastic oscillator under the assumption
of a small relaxation modulus. Also, an experimental method of dynamically measuring
the relaxation time and relaxation modulus was suggested.

The main purpose of the present paper is to investigate the effects of the non-linearity
in the history dependence of the force from a viscoelastic material, on the dynamics of a
one-degree-of-freedom oscillator (see Figure 1). In section 2, the material-with-memory
model used for the viscoelastic material is described and the dynamic equations for the
oscillator are derived. It is shown that, though the oscillator has one degree of freedom,
it is described by a three dimensional state space due to the history dependent force. In
sections 3 and 4 the motion of the oscillator is studied. It is demonstrated how the
governing equations may be put into a form that allows for the method of averaging to
be applied, in order to study amplitude–frequency relationships for non-linear periodic
motions. By the use of the method of averaging, it is shown that the non-linearity in the
dissipative history dependent force may lead to a jump bifurcation in the oscillator even
when the elastic part of the restoring force is linear.

2.     

In the main body of this work, the motion of a one-degree-of-freedom oscillator with
a lumped mass m, which is subject to a restoring force due to the action of a viscoelastic
material with memory and a force p(t), where t denotes time, will be studied. One adopts
the same constitutive model as in reference [8] and assume that the motion and all forces
are uniaxial, as indicated in Figure 1.

For the one-dimensional setting of Figure 1, let x= x(X, t) denote the position at the
present time t of a particle of the viscoelastic bar which is at X= x(X, 0) in its undistorted
natural state at time t=0. The history of the motion is represented by x(X, t− s), [se 0.
Then, if one lets F0 1x/1X denote the deformation gradient, the relative deformation
gradient history is given by F(X, t− s)/F(X, t), [se 0. The relative history is then
characterized by

Jt (X, t− s)= [F(X, t− s)]2/[F(X, t)]2 −1, [se 0. (1)

The constitutive response function for determining the present value of the axial force
f(X, t) on the particle X in the viscoelastic bar is assumed to be of the finite-linear form,
see reference [12]),

f(X, t)= f� e(F(X, t))+g
a

0

G� (s)Jt (X, t− s) ds, (2)

where f� e(·) denotes the elastic response function and G(·) is the viscoelastic relaxation
kernel for the material.

Figure 1. Schematic diagram of an one-degree-of-freedom oscillator with history type force.
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One supposes that the motion of the viscoelastic bar is homogeneous, so that one may
write

x= x(X, t)=Xx̃(t). (3)

Then, the deformation gradient F(X, t)= 1x(X, t)/1X= x̃(t) is, in fact, the homogeneous
‘‘stretch’’ of material filaments so that

f� e(F(X, t))= f� e(x̃(t)), Jt (X, t− s)= [x̃2(t− s)− x̃2(t)]/x̃2(t). (4)

We shall assume that G(·) is given by the exponentially decaying relaxation function

G(s)0G0 e−s/g, [se 0, (5)

where G0 q 0 and the relaxation time gq 0. If one lets L0 denote the referential length of
the viscoelastic bar, then the dynamical equation for the mass m is

mẍ(L0, t)= p(t)− f(L0, t), (6)

which, with equations (1), (3), and (4), can be rewritten as

mL0 x̃� (t)=−f� e(x̃(t))+
G0

g g
a

0

e−s/g x̃2(t− s)− x̃2(t)
x̃2(t)

ds+P cos (Vt), (7)

where the special forcing function p(t)=P cos Vt has been introduced.
In the present work, it is convenient to rewrite equation (7) as a system of first order

ordinary differential equations. To do this, one defines the auxiliary function

z	 (t)=g
a

0

e−s/g x̃2(t− s)− x̃2(t)
x̃2(t)

ds. (8)

Then, it readily follows that equation (7) has the equivalent form

x̃� (t)= h̃(t), mL0 h̃� (t)=−f� e(x̃(t))+ (G0 /g)z	 (t)+P cos (Vt),

z(t)=−[1/g+2h̃(t)/x̃(t)]z	 (t)− g2h̃(t)/x̃(t). (9)

Clearly, an equilibrium point (x̃*, h̃*, z	 *) for equations (9), (i.e. when P=0), is given by
(x̃*, 0, 0), where x̃* is any root of the equation f� e(x̃*)=0.

In order to bring equations (9) into a dimensionless form, one defines a dimensionless
time t through

t=v0 t, (10)

where v0 is the natural frequency of small oscillations about the equilibrium point x* of
equation (9), and is given by

v0 =zk/mL0, (11)

where

k=(d f� e/dx̃) (x̃*). (12)

Further, one introduces

x(t)= x̃(t/v0), y(t)= (1/v0)ỹ(t/v0), z(t)= (1/g)z	 (t/v0), (13)

� ˜
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and equations (9) take the form

ẋ= y, ẏ= f(x)+ oF0 z+ op cos (vt), z� =−[1/gv0 +2y/x]z−2y/x, (14–16)

where

f(x)=−f� e(x̃)/k, oF0 =G0 /k, op=P/k, v=V/v0, (17)

and where superposed dots now represent differentiation with respect to the
non-dimensional time t.

Thus, though the oscillator has one degree of freedom, its dynamics is described by a
three dimensional state space due to the history dependence of the restoring force.

In what follows, one shall assume that 0E o�1 while p and F0 are O(1). When o=0,
there is no coupling between equation (15) and equation (16). This leads to a simpler
system that will be studied first. One then considers the case 0Q o�1 as a perturbation
of the case where o=0.

One shall also assume that the dimensionless elastic force is linear, and that it is given
by f(x)0 1− x. This is equivalent to assuming f� e(x̃(t))=−k(x̃(t)− x̃*) with x̃*=1, i.e.,
since x̃*=1 corresponds to the undistorted state of the bar; one is considering small
motions about this undistorted state. The problem of weakly non-linear elastic restoring
forces may be treated in a manner similar to what will be described in this paper.

3.   o=0

One starts by noting that when o=0, the motion is a free (i.e. undamped and
unforced) sinusoidal oscillation about the fixed point at x=1. Such a motion may be
represented by

x0(t)=1+A cos (vt)+B sin (vt), y0 (t)=−vA sin (vt)+vB cos (vt), (18, 19)

or alternatively in polar form by

x0 (t)=1+R cos (vt−U), y0 (t)=−R sin (vt−U), (20, 21)

where

R=zA2 +B2, U=arctan (B/A). (22, 23)

Note that, though there is no coupling between the evolution equation for z(t), i.e.,
equation (16), and the governing equations for x(t) and y(t), i.e., equations (14) and (15),
z(t) itself is not zero. In fact, a time integration of equation (16) gives†

zu(t)= z0
x2

0 (t0)
x2

0 (t)
e−(1/gv0) (t− t0) +

e−(1/gv0)t

x2
0 (t) g

t

t0

−2y0 (t')x0 (t')e(1/gv0)t' dt', (24)

where the superscript u in zu denotes that this is a solution to the unperturbed problem,
(i.e. in the case o=0), and where x0 (t) and y0 (t) denote the unforced, undamped solution
of equations (14) and (15), which is given by equations (18) and (19), and z0 denotes the
value of zu(t) at some initial time t= t0. It is clear that the first term of equation (24) is
exponentially decaying in time. Therefore, since x0 (t) and y0 (t) are periodic, zu(t) will
eventually be periodic, i.e., after the initial transient has died out. Figure 2 shows such an
orbit with (x(0), y(0), z(0))= (1·1, 0·1, 0), and gv0 =2.

† Alternatively, this may be obtained from equation (8).



0.4

–0.2

0.2

ζu

x
y

0

0.2
0.1

0
–0.1

–0.2
0.9

1.1
1

    191

Figure 2. An eventually periodic orbit (x(t), y(t), z(t)) of equations (14), (15) and (16) with o=0,
(x(0), y(0), z(0))= (1·1, 0·1, 0), and gv0 =2.

It may be noted that a special choice of the initial value z0 for t= t0 will directly lead
to periodic behavior for zu(t). Denoting this value of z0 by z0T , one may write

zu(t0 ; z0T )= zu(t0 +T; z0T ), (25)

where T denotes the period of x0 (t) and y0 (t). Using the periodicity of x0 (t), this gives

z0T =
1

1− e−(1/gv0)T

e−(1/gv0) (t0 +T)

x2
0 (t0) g

t0 +T

t0

−2y0 (t')x0 (t')e(1/gv0)t' dt'. (26)

One now substitutes equations (20) and (21) into equation (24) and performs the
integration. In doing so, one assumes t0 =0 without loss of generality. One obtains

zu(t)= e−(1/gv0)t/(1+R cos (vt−U))2

×[z0 (1+R cos U)2 + (2gv0 vR/[1+ g2v2
0 v2]) (gvv0 cos U+sin U)

×(2R2vgv0 /[2+8g2v2
0 v2]) (2gvv0 cos 2U+sin 2U)]

−[2/(1+R cos (vt−U))2] ((gv0 vR/[1+ g2v2
0 v2])

×(gv0 v cos (vt−U)− sin (vt−U))

−gv0 vR2/([2+8g2v2
0 v2]) (2gv0 v cos (2vt−2U)− sin (2vt−2U))). (27)

Clearly, the first term of equation (27) is a transient with exponentially decaying amplitude.
Therefore, in the steady state, zu(t) is given by the second term of equation (27) alone,
which has no dependence on the initial value z0. One may then define z0 (t) as the steady
state value of zu(t) that corresponds to equations (20) and (21), and one has

z0 (t)=−[2/(1+R cos (vt−U))2] ((gv0 vR/[1+ g2v2
0 v2]) (gv0 v cos (vt−U)

−sin (vt−U))− (gv0 vR2/[2+8g2v2
0 v2]) (2gv0 v cos (2vt−2U)− sin (2vt−2U))).

(28)
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4.   0Q o�1

In order to look for solutions of equations (14–16) in the case where o$ 0 the
method of variation of parameters will be used (see e.g., references [13, 11, 14]). Thus
one expects, for o sufficiently small, that there will be a periodic solution of
equations (14–16) that is of the same form as equations (18) and (19), but with the
constants A and B replaced by time dependent coefficients u(t) and v(t). For this motion,
one writes

x(t)=1+ u(t) cos (vt)+ v(t) sin (vt), y(t)=−vu(t) sin (vt)+vv(t) cos (vt).

(29, 30)

For later use, one notes that in polar co-ordinates, this corresponds to

x(t)=1+ r(t) cos (vt−f(t)), y(t)=−vr(t) sin (vt−f(t)), (31, 32)

where r(t) and f(t) replace the constants R and U respectively in equations (20) and (21).
It also follows that

u(t)= r(t) cos (f(t)), v(t)= r(t) sin (f(t)). (33, 34)

Next, solving for u(t) and v(t) from equations (29) and (30), differentiating the resulting
expressions, and using equations (14) and (15) gives the dynamical equations for the
evolution of u(t) and v(t). These are

u̇=−v[(x−1) (1−1/v2)+ (o/v2)F0 z(t)+ (o/v2)p cos (vt)] sin (vt), (35)

v̇=−v[(x−1) (1−1/v2)+ (o/v2)F0 z(t)+ (o/v2)p cos (vt)] cos (vt). (36)

For what follows, it is convenient to use polar co-ordinates. Thus, using equations (33)
and (34) in equations (35) and (36), one obtains

ṙ=F1 cos (f)+F2 sin (f), f� =(1/r) (F2 cos (f)−F1 sin (f)), (37, 38)

where

F1 =−v[r(t) cos (vt−f(t)) (1−1/v2)+ (o/v2)F0 z(t)+ (o/v2)p cos (vt)] sin (vt), (39)

F2 =−v[r(t) cos (vt−f(t)) (1−1/v2)+ (o/v2)F0 z(t)+ (o/v2)p cos (vt)] cos (vt). (40)

The use of variation of parameters for z0(t) in equation (28) gives

z(t)=−
2

(1+ r(t) cos (vt−f(t)))2

×0 gv0 vr(t)
1+ g2v2

0 v2 (gv0 v cos (vt−f(t))− sin (vt−f(t)))

−
gv0 vr(t)2

2+8g2v2
0 v2 (2gv0 v cos (2vt−2f(t))− sin (2vt−2f(t)))1, (41)

which is to be substituted into equations (39) and (40).
For v close to 1, equations (37) and (38) are in a form that allows for the method of

averaging to be employed to determine the existence and stability of r(t) and f(t). (For
a discussion of the method of averaging, see for example references [14], [11], pages
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166–180].) Averaging equations (37) and (38) over one period, i.e., 2p/v, one obtains

r̄�=
op

r̄z1− r̄2v2 $−2gv0 vF0

2+8g2v2
0 v2 (−8+(4+2r̄2 +4z1− r̄2) (1+cos 2f� +sin 2f�))

−
4gv0 vF0

1+ g2v2
0 v2 (1−z1− r̄2)+ pr̄z1− r̄2 sin f�%, (42)

f=
op

r̄4(1− r̄2)3/2v2 $−2gv0 vF0

2+8g2v2
0 v2 [(4−6r̄2 +2r̄4 −4(1− r̄2)3/2) (−1+4gv0 v)

−4gv0 vr̄4 + (4+6r̄2 −2r̄4 +4(1− r̄2)3/2) (cos 2f� −sin 2f�)+8 sin 2f�]

+ r̄4(1− r̄2)3/2(v2 −1)−
4g2v2

0 v2F0 r̄2

1+ g2v2
0 v2 [−1+ r̄2 + (1− r̄2)3/2]%, (43)

where r̄ and f� denote the averages of r and f, respectively.
It follows from the Averaging Theorem that for sufficiently small o, an equilibrium point

of the averaged equations (42) and (43) corresponds to a periodic orbit of equations (37)
and (38) and, therefore, of the original dynamical equations (14–16). In Figure 3, the value
of r̄ for such equilibrium points is plotted as a function of the angular frequency v for
three different values of the relaxation modulus F0. As one would expect, larger values
of F0 lead to smaller amplitudes due to larger dissipation. The corresponding phase lag
f� is shown in Figure 4.

In Figures 5 and 6, the value of r̄ and f� of the equilibrium points of equations (42) and
(43) are shown as functions of v for various values of gv0 and fixed F0. Figure 5 shows
that, as gv0 is decreased, the maximum value of r̄ occurs at a value of v which approaches
1. On the other hand, an increase in gv0, which corresponds to an increasing importance
of memory effects, results in the maximum of the amplitude curve being shifted to the right.

¯�

Figure 3. Amplitude dependence of harmonic response for various values of p; F0 =0·1, gv0 =1.
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Figure 4. Phase dependence of harmonic response for various values of p; F0 =0·1, gv0 =1.

At the same time, the curves tend to ‘‘fold’’ to the right in a way similar to that typical
of a hardening spring.

Figures 7 and 8 show two saddle–node bifurcations for the equilibrium of equations (42)
and (43). These occur for the values of v1 1·20 and v1 1·26. In the region between these
saddle–node bifurcations, there are three (two stable and one unstable) coexisting
equilibria. How well these bifurcations reflect bifurcations that occur in the periodic orbits
of equations (14–16) is commented on in the next section.

A phase portrait of equations (42) and (43) showing the two stable fixed points and the
unstable saddle point that are created through the saddle–node bifurcations in Figures 7
and 8 is shown in Figure 9. The curves are the invariant manifolds of the saddle point

Figure 5. Amplitude dependence of harmonic response for various values of gv0; F0 =0·1, p=0·03.
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Figure 6. Phase dependence of harmonic response for various values of gv0; F0 =0·1, p=0·03.

at (r̄, f�)1 (0·74, 2·1). The stable fixed points are at (r̄, f�)1 (0·35, 2·8) and
(r̄, f�)1 (0·78, 1·2). The two corresponding coexisting periodic orbits of equations (14–16)
are shown in Figure 10.

5. :    

When r̄ (which may serve as an approximation for the amplitude of the non-linear
periodic motion of equations (14, 15)) approaches 1, z0 (t) defined in equation (28) is no
longer O(1), so that oz0 (t) may not be considered small. The results obtained by the method
of averaging are then not strictly valid, though they may give a good qualitative indication

Figure 7. Example of a jump bifurcation that may occur in the amplitude for an oscillator with history
dependent damping; gv0 =1·0, F0 =0·1, p=0·15.
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Figure 8. Example of a jump bifurcation that may occur in the phase angle for an oscillator with history
dependent damping; gv0 =1·0, F0 =0·1, p=0·15.

Figure 9. Phase portrait of the averaged system for gv0 =1·0, v=1·25, op=0·15, and oF0 =0·10.

of the behavior of the system. As an illustration, the amplitude curve in Figure 7 may be
compared to an amplitude curve numerically obtained by the use of the ‘‘brute force’’
method†. Thus, defining an approximation for the amplitude of the periodic orbit for a
certain value of v by j= xmax −1, where xmax is the maximum value of x on the periodic
orbit for that value of v, such a bifurcation diagram is obtained for j and is shown in
Figure 11 (dots). For the sake of comparison, the amplitude curve of Figure 7, which is

† In the brute force method, the stable periodic orbit is determined numerically for a sequence of values of
v and, for example, the maximum x value on each orbit is plotted against the corresponding value of v. The
resulting plot gives an indication of the existence of the orbit and its amplitude for the range of values of v
considered (see e.g., reference [15]).
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Figure 10. The two coexisting periodic orbits of different amplitude at op=0·15, gv0 =1·0, oF0 =0·1, v=1·25.

obtained by the method of averaging, is shown in the same diagram (solid curve). Note
that the two amplitude curves do not agree well when the amplitude of the periodic orbit
is larger than approximately 0·6. However, the prediction of a saddle–node bifurcation at
v1 1·2 given by Figure 7 is accurate since this bifurcation occurs at an amplitude of
approximately 0·6. On the other hand, the saddle–node bifurcation predicted by Figure 7
to occur at v=1·27 occurs in fact for v1 1·22. Note that since the ‘‘brute force’’ method
cannot capture unstable orbits, the saddle–node bifurcations appear as jump bifurcations.

Figure 11. A comparison between the amplitude of oscillations r̄ as obtained by the method of averaging and
shown in Figure 7 (——), and a bifurcation diagram obtained by the ‘‘brute force’’ method (· · · ·). (The unstable
branch in Figure 7 is not shown.) gv0 =1·0, F0 =0·1, p=0·15.
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6.  

Most currently used models for the dynamic mechanical behavior of viscoelastic
materials are based on frequency dependent complex moduli. These models are adequate
for linear oscillations. In the case of large vibrations, the non-linear dependence of the
viscoelastic force on the history of the motion becomes of importance. An understanding
of this non-linear behavior may widen the scope of applications of viscoelastic materials.

A possible description of the effects of non-linear history dependence is given by the
material-with-memory model. The adequacy of this model in describing true viscoelastic
behavior strongly depends on the relaxation function used. In this paper, the simple
exponentially decaying relaxation function with a single relaxation time was adopted. This
may serve as a general model for some materials, and even in cases where a viscoelastic
material is not strictly described by this relaxation function, the results may serve as an
indication of what qualitative behavior to expect. However, a continued study of the
dynamics of systems with non-linear history dependence, with more complex relaxation
functions, remains important.
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